Examination Control Division ### 2080 Chaitra | Exam. | Regular | | | |-------------|--|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BEL,BEI,BEX,
BCT,BAM,BIE,
,BAG,BAS | Pass Marks | 32 | | Year / Part | I / II | Time | 3 hrs. | ## Subject: - Engineering Chemistry (SH 453) | | · · · · · · · · · · · · · · · · · · · | | |---------|---|---------| | ✓ ✓ ✓ ✓ | The figures in the margin indicate Full Marks. | - | | 1. | What is Daniel cell? How do you measure standard reduction potential of silve electrode? Calculate the emf of the following cell at standard condition Ni/Ni ⁺⁺ (0.5M) // Ag^+ (0.4M) / Ag . Given, E^0 Ni/Ni ⁺⁺ = +0.25V, E^0 Ag / Ag^+ = -0.80V. | | | 2. | Define Buffer capacity. How does basic buffer solution reserve its pH value on the addition of small amount of strong acid or strong base? A buffer is made by mixing 400ml of 0.3M CH ₃ COOH with 200ml of 0.6 M CH ₃ COONa. Calculate the pH of the resulting buffer. (Pka=4.74). | J | | 3. | How does catalytic promoter enhance the rate of chemical reaction? Explain intermediate compound formation theory of catalyst. | [2+3] | | 4. | How is global warming caused due to air pollution? Write the consequences of global warming and its possible remedies. | | | 5. | What are the major sources of water pollution? Mention the effects and remedies of oxides of Sulphur. | | | 6. | How are silicones prepared? Write its applications. | [3+2] | | 7. | Write down the preparation and uses of Teflon and epoxy resin. | [2+3] | | | Explain the variable oxidation states and color compound formation of typical transition | | | 9. | What are typical transition elements? Why are they called so? Explain why Cut | | | 10. | a) What is meant by EAN of central metal ion in the complexes. Calculate the EAN of central metal ion in the complex of [Co(NH ₃) ₅ Cl] ²⁺ . | [3] | | | b) Write the IUPAC name of following coordination compounds: | [2] | | | (i) K[PtCl ₃ (NH ₃)] (ii) [Pt(Py) ₄][PtCl ₄] (iii) [Ni(en) ₂ Cl ₂] (iv) [Co(NH ₃) ₅ SO ₄]Cl | [-] | | 11. | How does valance bond theory explains the geometry and magnetic behavior of [NiCl ₄] ² - | | | | and IN; (CN) 12- according to an o | .5+2.5] | | 12. | What is a plastic explosive? Write down the preparation and uses of TNT and TNG. | [1+4] | | | a) What are paints? Mention the requisites of a good paint. | [2.5] | | | b) How does grease work to reduce friction in colliding surfaces? | [2.5] | | 14. | Explain the geometrical isomerism with a suitable example. Write the possible structures of 2,3 dichloropentane and show enantiomers and diastereomers in them. | | | | Explain the mechanism of bimolecular nucleophilic substitution reaction with a suitable example. Why inversion product predominates more than retention product in $S_N^{\ I}$ reaction? | [4+1] | | | | ւ Դյ | [3+2] 16. Explain E1 and E2 reaction mechanism with examples. ### TRIBHUVAN UNIVERSITY ### INSTITUTE OF ENGINEERING ### **Examination Control Division** | 76 | 170 | 1 | aitra | | |----|-----|---------|-------|--| | 4 | 317 | V . E 1 | allia | | | Exam. | R | egular | | |-------------|--|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEI, BEX,
BCT, BAM, BIE,
BAG, BAS | Pass Marks | 32 | | Year / Part | I/II | Time | 3 hrs. | [2+3] ### Subject: - Engineering Chemistry (SH 453) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt <u>All</u> questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. $$\dot{Fe}$$ / Fe^{++} (0.2M) // Ag^{+} (0.1M) / Ag Given, $E^{\circ}Fe^{++}$ / $Fe = -0.44 \dot{V}$ and $E^{\circ}Ag^{+}/Ag = +0.80 \dot{V}$ - 2. Explain the mechanism of basic buffer solution taking suitable example. What is the pH of the solution when 0.2 mole of HCI is added to one litre of a solution containing 1M each of acetic acid and sodium acetate? Assume the total volume as one liter, (Ka for $CH_3COOH = 1.8 \times 10^{-5}$). - 3. Explain adsorption theory of heterogenous catalysis with a suitable example. Point out any two industrial applications of catalysis. [3+2] - 4. What is global warming? What are the possible consequences of uncontrolled global warming? Mention the major sources of particulate matter that pollute the air and its adverse effects. [1+1+3] - 5. What are the main sources of water pollution? How water pollution affects the life of organisms? Mention the possible remedies of water pollution. [2+2+1] - 6. a) What are inorganic polymers? Write their characteristic properties. [2.5] - b) How is polyphosphazene prepared? Write its applications. [2.5] - 7. Write the preparation and uses of Teflon and Epoxy resin. [2.5+2.5] - 8. Explain the variable oxidation states and colour compound formation of typical transition elements. [2.5+2.5] - 9. Explain the following: [2.5+2.5] - a) Tendency to form complex compound by transition element. - b) Catalytic property of transition element. - 10. $[FeF_6]^{3}$ is more paramagnetic than $[Fe(CN)_6]^{3}$, explain with the help of VBT approach. [5] - 11. Write the IUPAC name of the following complexes: [5] - a) [Co(NH₃)₄ Cl₂] NO₃ - b) $[Cr (H_2O)_4 (NH_3)_2]^{34}$ - c) [Pt (NH₃)₂ Cl₂] - d) $[A1(C_2O_4)_3]^{3}$ | 12. What are low and high explosives? Write the preparation and uses of TNT and guncotton. Write its uses. | | |--|-------| | | [2+3] | | 13. a) What is lubricant? Write the functions of lubricant.b) Write an account of fire retardant and heat resistant paint. | [3] | | * | [2] | | 14. a) Explain geometrical isomers with examples.b) Write all possible stereoisomers of 2, 3-dichloropentane and differentiate them into enantiomers and diastereomers. | [2] | | | [3] | | 15. Explain why SN ₂ reaction gives product with inversion of configuration with example. How does polarity of solvent and nature of nucleophile affect SN ₁ reaction? | [3+2] | | 16. Explain the reaction mechanism of tert-butyl chloride with alcoholic NaOH. Define Saytzeff's rule with suitable example. | [3+2] | | *** | | | | | . ٠, ### **Examination Control Division** ### 2078 Chaitra | Exam. | Regu | ar 🔍 | | |-------|---|---------------|-------| | Level | BE · | Full Marks | 80 | | | BEL, BEI, BEX, BCT,
BAM, BIE, BAG, BAS | Pass
Marks | 32 | | | I/II | Time | 3 hrs | - Subject: Engineering Chemistry (SH 453) Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt All questions. The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. 1. Explain the application of electrochemical cell and electrolytic cell in engineering. The emf of the cell, $Zn(s) / Zn^{2+} (0.1M) // Cd^{2+} (M_1) / Cd(s)$ has been found to be equal to 0.3305 volt at 298K. Calculate the value of M1. Given: [2+3] ${E^0}_{Zn/Zn}^{\ 2+} = +\ 0.76 V \ and \ {E^0}_{Cd/Cd}^{\ 2+} = +\ 0.40 \ V$ 2. Why does dilution has no effect on the pH of buffer solution? Describe it with the help of a suitable mathematical equation. What mass of NH₄Cl must be added to 0.5 L of 1.0 mol/L NH₃ solution to yield a solution with a pH of 9.0? Assume no change in volume. [2+3](Given: K_b of $NH_3 = 1.8 \times 10^{-5}$). 3. Define autocatalysis and promoters. Explain the contact theory of catalysis with suitable [2+3]example. 4. What is global warming? What are the possible consequences of uncontrolled global warming? Mention the major sources of particulate matter that pollute the air and their [1+1+3] adverse effects. 5. Write down the major sources of water pollution and mention its harmful effects. Discuss [1+2+2]the possible remedies to control water pollution. 6. Write the preparation and use of polyphosphazine. Give the structure of cyclic and cross [3+2]linked structure of silicone and mention its application. 7. What is meant by conducting polymer? Write the methods of preparation and application [1+4]of Teflon and Bakelite. [2+3]8. Explain: a) Ni²⁺ ion has lower magnetic moment than Co²⁺ ion. b) Transition elements form significant number of complexes. [3+2]9. Give reasons: a) $[Ti(H_2O)_6]^{3+}$ is coloured while $[Sc(H_2O)_6]^{3+}$ is colourless. b) Zn, Cd and Hg are not considered true transition elements. 10. State EAN rule and its significance. Predict the stability and magnetic behaviour of [2+1+2][CuCl₄]²⁻ on the basis of EAN rule. - Give the nomenclature of following complex compounds: - a) Na₃[AgF₄] - b) [Fe(H₂O)₆]SO₄ - c) [Ni(CO)4] - d) $[Ag(NH_3)_2][Fe(CN)_4]$ | | Justify: | [3+2] | |-------|--|-------| | t | [Ni(CO) ₄] is tetrahedral while [Ni(CN) ₄] ²⁻ is square planar.
b) $[CoF_6]^{3-}$ ion is a high spin complex and $[Co(CN)_6]^{3-}$ ion is a low spin complex. | | | | Write the preparation and uses of TNT and TNG. What are the requirements of good explosive? | +2+1] | | 13. I | Mention the main functions of a lubricant. In what condition a solid lubricant is used? Give an account on varnishes and emulsion paints. | +1+2] | | • | Draw all the possible stereoisomers of
3-bromobutan-2-of and specify whether they are optically active or not. Identify all the possible enantiomers and diastereomers. Does the presence of two chiral carbon atoms always make the molecule optically active? Explain giving examples. | [3+2] | | | Explain E ₁ reactions with reference to dehydrohalogenation of haloalkane and give an account of Saytzeff's rule. | [3+2] | | 16. | Why does SN ₁ reaction gives both retention and inversion isomers? Explain SN ₂ reaction mechanism with reference to hydrolysis of alkyl halide. | [2+3] | | | *** | | | | | | ### **Examination Control Division** ### 2077 Chaitra | Exam. | iiiii | Regular | i sanant | |-------------|--|------------|----------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEI, BEX,
BCT, BAM, BIE,
BAG, BAS | Pass Marks | 32 | | Year / Part | I / II | Time | 3 hrs. | ## Subject: - Engineering Chemistry (SH 453) - ✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt <u>All</u> questions. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. 1. a) Write the mechanism of basic buffer. What are the criteria for buffer system? [2+1]b) Calculate the p^H of mixture containing 10 ml of 0.1 M ammonium chloride solution and the same volume of 0.2 M ammonia solution. (p^{kb} for ammonia solution is 4.74) [2] 2. What is voltaic cell? The value of E_{cell}^0 for the reaction: $2Al_{(s)} + 3Cd^{2+}_{(aq)} \rightarrow 2Al^{3+}_{(aq)} +$ $3Cd_{(s)}$ is 1.26 V. Calculate the E_{cell} at $30^{\circ}C$. Given that: $[Al^{3+}] = 0.5M$ and $[Cd^{2+}] = 0.2M$ [2+3]3. What are catalysts? Explain the adsorption theory of catalysis with a suitable example. Point out criteria of catalysts used for industrial purpose. [1+3+1]4. How is acid rain caused due to air pollution? Write the consequences of acid rain and its possible remedies. [2+3]5. Write down the major water pollutants and their harmful effects on mankind. Mention their possible remedies. [5] 6. What is conducting polymer? Mention preparation and use of the Polyurethene and Epoxy resin. [1+2+2]7. What is fiber reinforced polymer? Give the preparation and applications of Polyphosphazenes and Polymeric Sulphur nitride (SN)_n. [1+2+2]8. a) Why are transition elements called so? Which of the 3d series elements is not a transition element and why? [1+2]b) Why do transition elements form significant number of complexes? [2] 9. Explain with suitable reasons: [2.5+2.5]a) Compounds of transition elements are usually colored. b) The presence of unpaired electrons make a substance paramagnetic in nature. 10. a) What is meant by EAN of central metal ion in the complexes? What is the significance of calculating the EAN. Calculate the EAN of the central metal ion in the complex $[Cr(H_2O)_6]^{3+}$. [1+1+1]b) Write the IUPAC names of the following coordination compounds. [2] (i) $[Pt(H_2O)]_4[Pt(Cl)_4]$ (ii) $[Ni(en)_2Cl_2]^{2+}$ (iii) $[Co(NH_3)_4Cl_2]^+$ (iv) $K_4[Fe(CN)_6]$ 11. How does valence bond theory explain the formation of $[Fe(F)_6]^3$. Also predict its magnetism and geometry with reason. [3+2]12. What are Plastic explosives? How can you prepare TNT? Why is detonator required for the explosion of TNT? [1+2+2]13. a) What are lubricants? Mention the importance of lubrication in engineering. [1+1.5]b) Show your acquaintance to paints. [2.5] - 14. a) Write the necessary conditions for a compound to show geometrical isomerism. b) Explain enantiomers and meso-compounds with examples. 15. What is meant by SN reaction? Explain the mechanism for the nucleophilic substitution reaction that proceeds with an inversion of configuration. Why does inversion product predominate more than retention product in SN1? [1+3+1] [2.5+2.5] 16. What do you mean by elimination reaction? Write the mechanism for dehydrohalogenation of bromoethane in alc. KOH. Show your acquaintance to Saytzeff's rule. [1+2+2] ### **Examination Control Division** 2076 Bhadra | Exam. | Regular / Back | | | | |-------------|---|------------|--------|--| | Level | BE | Full Marks | 80 | | | Programme | BEL, BEX, BEI, BCT,
BAM, BIE, BAG, BAS | Pass Marks | 32 | | | Year / Part | I/II | Time | 3 hrs. | | ### Subject: - Engineering Chemistry (SH 453) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt All questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. - 1. What is standard electrode potential? How is the standard electrode potential of zinc electrode determined? Calculate the emf of the following cell at 25°C. [1+2+2] Fe|Fe⁺⁺ (0.1 M) || Cu⁺⁺ (0.2 M) | Cu Given E°Fe⁺⁺/Fe = -0.44 V and E°Cu⁺⁺/Cu = +0.34 V - 2. Derive Henderson's equation for basic buffer solution. How much amount of potassium acetate in gram should be added in 0.5 M solution of acetic acid so as to prepare a buffer solution of pH 4.5 (Ka for acetic acid = 1.8×10⁻⁵). [2+3] - 3. Define catalyst. How does a catalyst alter the rate of a reaction? Explain adsorption theory of catalysis with a suitable example. [1+1+3] - 4. What do you mean by water pollution? Mention its major sources and control measures. [1+2+2] - 5. a) What will be the effect of increasing concentration of CO₂ on the atmosphere? [2.5] - b) Describe the role of CFCs in the depletion of ozone layer with the photochemical reactions. [2.5] - 6. What is inorganic polymer? Give an account of preparation and uses of chalcogenide glasses. Also mention the uses of silicones. [1+2+2] - 7. Write the preparation and uses of Nylon-6, 6 and polyurethanes. [2.5+2.5] - 8. What are transition elements? Why do transition elements show variable valency? Explain the stability of various oxidation states with respect to 3d series elements. [1+2+2] - 9. Why does the presence of an unpaired electron make a compound paramagnetic? Explain it with magnetic moment measurement. Why Cu(I) is diamagnetic but Cu(II) is paramagnetic? [4+1] - 10. Explain the formation of $[Fe(CN)_6]^{4-}$ & $[FeF_6]^{3-}$ on the basis of valence bond theory and also predict their magnetic property. [2.5+2.5] - 11. What do you understand by principal and auxiliary valency of the central ion in complex compound? Illustrate them in K₄[Fe(CN)]₆. Name the following complexes by IUPAC system. - i) K₂[PtF₆] - ii) $Na_3[Al(C_2O_4)_3]$ - iii) [Cr(NH₃)₄Cl₂]⁺ - iv) $[Co(NH_3)_5NO_2]Cl_2$ | 12. What are le | w and high exp
(TNT) and trinitro | losives? Write | the prepar | ation and | applications | | |--|--|--|---------------|-------------|---------------|---------| | | | | | | | [1+2+2] | | | lubricating oil? Mer | | | | | [1+2] | | | b) Show your acquaintance to the applications of paints in the field of engineering. | | | [2] | | | | 14. a) What are geometrical isomers? Write the criteria for a compund to exhibit geometrical isomerism. | | | | | | | | | | | | | | [2] | | b) Show you | r acquaintance to en | nantiomers and d | iasteromers | giving suit | able example. | [3] | | 15. What is meant by SN reaction. Explain the mechanism of the reaction between 3° alkyl halid and aqueous NaOH. | | | | | | | | 16. Write the me example. Wri | chanism of dehyde
e your acquaintanc | rohalogenation of
e with Saytzeff's | of tertiary a | lkyl halid | with a suita | | *** ## **Examination Control Division** 2075 Bhadra | Exam. | Regulared | | | | |-------------|----------------------------------|------------|-------|--| | Level | BE | Full Marks | 80 | | | Programme | BEL, BEX, BCT,
BAME, BIE, BAG | Pass Marks | 32 | | | Year / Part | I/II | Time | 3 hrs | | ### Subject: - Engineering Chemistry (SH453) ✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt All questions. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. - 1. What is buffer solution? Calculate the amount of sodium acetate in gram required to prepare a buffer solution having pH 5.1 with one liter of 0.2N acetic acid solution. Ka value of acetic acid is 1.8 × 10⁻⁴. [2+3] - 2. Write the points of differences between electrolytic and galvanic cell. From the given information answer the following questions. $Ni \rightarrow Ni^{++} + 2e^{-}$ $E^{0} = 0.24V$ $[Ni^{++}] = 0.1M$ $Cd \rightarrow Cd^{++} + 2e^{-}$ $E^{0} = 0.40V$ $[Cd^{++}] = 0.01M$ [2+3] - a) Identify anode and cathode while constructing the galvanic cell with reasons. - b) Write the symbolic representation of the galvanic cell when above given electrodes are coupled. c) Calculate the emf of the galvanic cell thus constructed at 25°C. - 3. Define heterogeneous catalysis? Explain the absorption theory of catalysis with an example. List two criteria for choosing a catalyst for industrial purposes. [1+3+1] - 4. Point out the major water pollutants, their adverse effects and write its controlling measures. [1+2+2] - 5. What are the main gases responsible for causing greenhouse effect and how are they released into the atmosphere? Give an account to control the release of these gases. [1+2+2] - 6. Give an account of conducting and biodegradable polymers. Write down the preparation of epoxy resin. Point out the important applications of epoxy resin and nylon 6, 6. [2+1+2] - 7. What are inorganic polymers? Give an account of chalcogenide glass and polythiazyl. [1+2+2] - 8. What are transition elements? Are all the d-block elements considered as typical transition elements? Justify your answer with reason. [1+1+3] - 9. Explain with reasons: a) Transition elements and their compounds show catalytic property - b) Compounds of Zn⁺⁺ are colourless and diamagnetic but those of Fe⁺⁺ are
coloured and paramagnetic [2.5+2.5] - 10. a) Differentiate between primary and secondary valencies in complexes. b) Write down the IUPAC name of the following complexes. [2] - Write down the IUPAC name of the following complexes. i) K[Ag(CN)₂]ii) [Fe(H₂O)₆]Cl₂ - iii) [Pt(NH₃)₂Cl₂] - iv) [Co(NH₃)₄Cl₂][†] | 11. In the given two complexes [NiCl ₄] ² and number but their geometries and magnetic p | | |---|---| | using VBT approach. | [3+2] | | 12. What are primary and low explosives? Write the | ne preparation and uses of Nitro cellulose. [2+3] | | 13. a) What are lubricating oils? Write the import | ance of lubrication in engine. [1+1.5] | | b) What are paints? Write the characteristics of | of good paints. [1+1.5] | | 14. a) What are geometrical isomers? What as geometrical isomerism? | re the criteria for a compound to show [1+1.5] | | b) Write the points of differences between en
example of each. | antionmers and diasteriomers with suitable [2.5] | | 15. Write the mechanism for the nucleophillic su only inversion of configuration. Write down the SN ² reactions. | | | 16. What do you mean by elimination reaction? I 3° alkyl halide in alcoholic alkali. | Describe the mechanism for the reaction of [1+4] | *** K 3 ### **Examination Control Division** 2075 Baishakh | Exam. | | Back | | |-------------|--------------------------------------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEX, BCT,
BIE, B. Agri., BAM | Pass Marks | 32 | | Year / Part | I/II | Time | 3 hrs. | ### Subject: - Engineering Chemistry (SH453) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt All questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. - 1. a) What is standard hydrogen electrode? Give cell notation of cu electrode with it. - b) From the given electrode couple $E^{0}_{Fe/Fe}^{++} = 0.44 \text{ volt}$, $[Fe^{++}] = 0.5 \text{ M}$ and $E^{0}_{Ag/Ae}^{+} = -0.80 \text{ volt}$, [Ag+] = 0.2 M. Write the (i) electrode reaction (ii) net cell reaction (iii) cell notation (iv) EMF of Fe-Ag cell and spontaneity of the cell reaction. [2+3] - 2. a) What is buffer action? Describe the mechanism of acidic buffer solution with a suitable example. - b) 60 mL of 0.5 M acetic acid is mixed with 40 mL of 0.25 M sodium hydroxide solution. What will be the p^H of the mixture? (Given Ka = 1.85×10⁻⁵) [3+2] - What are promoters? Describe the adsorption theory of catalysis with a suitable example. Point out criteria of catalysts used for industrial purpose. [1+3+1] - 4. a) What do you mean by chlorofluorocarbons? Mention their photolytic reactions in the upper atmosphere. - b) Why are the oxides of sulphur and nitrogen assumed as air pollutants? [3+2] - 5. What are the major sources of water pollution? Mention their adverse effects and possible remedies. [1+2+2] - 6. Nylon and Teflon are different polymers. Explain. Give the preparation and uses of epoxy resin. [3+2] - 7. What are chalcogenide glasses? Give an account of preparation and uses of network polymers of sulphur. [1+4] - 8. a) Why are transition elements called so? Are all d-block elements called transition elements? Justify your answer with reason. [1+2] - b) Why do transition elements from significant number of complexes? [2] - 9. Explain. Why? - i) Paramagnetic properties increases from SC to Mn and then decrease to Zn. - ii) Zn2+ salts are white while Cu2+ salts are coloured - iii) Fe+3 compounds are more stable than Fe⁺². [2.5+1.5+1] - 10. [Co(NH₃)₆]⁵⁻ and [CoF₆]⁵⁻ are both octahedral but shows marked difference in their magnetic properties. Explain. [2.5+2.5] | 11. Differentiate between double salt and complex salt. Write the application of Werner's | | |---|--------| | theory of co-ordination compound. | [3+2] | | 12. a) Write the characteristics of a good paint and explain the method of application of paint in galvanized iron. | | | b) What are lubricating oils? Write the chief functions of lubricants. | [3+2] | | 13. Write the points of difference between high explosives and plastic explosives. Mention the preparation and applications of TNT. | 5+2.5] | | |] | | 14. All the diastoreomers are stereoisomers but all the stereoisomers are not diastereomers. Explain. Describe the chemical method for resolution of racemic mixture. | [3+2] | | 15. Differentiate between nucleophile and electrophile. Explain the mechanism of dehydrohalogination of 2-Bromo -2- methylpropane. | [2+3] | | 16. Write the reaction mechanism of SN ² reaction with a suitable example. How does it differ from SN ¹ reaction? | [3+2] | | *** | | W 3 ## **Examination Control Division** ### 2074 Bhadra | Exam. | Re | gular | 美国教士 第 | |-------------|-------------------------------------|------------|---------------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEX, BCT,
BIE, B.Agri., BAM | Pass Marks | 32 | | Year / Part | I/II | Time | 3 hrs. | ## Subject: - Engineering Chemistry (SH453) | | √ | The state of s | | |---|----------|--|-----------------| | / | 1. | What are the criteria for buffer system? How many grams of sodium benzoate should be added to 160 mL of 0.13 M benzoic acid solution to obtain a buffer with a pH of 4.37 [pKa value of benzoic acid is 4.2] | ;
;
[1+4] | | | 2. | What is single electrode potential? Can its absolute value be measured? If not, how is the problem solved? Describe with a suitable example. | | | | 3. | What is meant by catalytic poisoning? Explain intermediate compound formation theory of catalysis referring suitable example. | [2+3] | | | | How is global warming caused due to air pollution? Write the consequences of global warming and its possible remedies. | [2+3] | | | | What do you mean by point and non point sources of water pollutants? Give an account of primary and secondary processes of waste water treatment to control water pollution. | [2+3] | | | 6. | What is biodegradable polymer? Write applications of carbon reinforced polymers and chalcogenide glasses in engineering. | [5] | | | 7. | How your acquaintance to polyurethanes and Bakelite. | 5+2.5] | | | 8. | What are transition elements? Why are all the transition elements not considered as typical transition elements? Explain the electronic configuration of the first transition elements | [+1+3] | | | 9. | a) Why do transition elements show variable oxidation states? Explain with reference to 3d series elements. | [1+2] | | | | b) Explain why compounds of Ti ³⁺ are coloured but those of zinc are colourless. | [2] | | | | What do you understand by a chelate and a chelating ligand? Describe Sidewick theory of co-ordination compounds with an example. Write down the IUPAC names of the following compounds. | 2+2+1] | | | | (i) $Na_3[Al(C_2O_4)_3]$ (ii) $[Co(NH_3)_4Cl_2]+$ | 1 | | | 11. | How does valence bond theory explain the formation of [Fe(CN)6] ³⁻ . Also explain whether this complex is inner or outer orbital and why? | [3+2] | | | 12. | What is plastic explosive? How can you prepare TNT from henzene? Why does detonator | [3,2] | | | | require for the explosion of TNT? | +2+2] | | | | a) What are lubricants? Mention the functions of lubricants. | [2.5] | | | | b) How is paint applied on wooden articles? | [2.5] | | | | | | - 14. a) What is geometrical isomerism? Why is trans-isomer more stable than Cis-isomer? Why is geometrical isomerism not possible in propene? - [3] [2] - b) Find out E or Z configuration in the following molecules. - (i) gr c = c f cl - (ii) CH_3 C_2H_5 C = C F - (iii) $\Gamma = C
C6h5$ C = C Ch3 - (iv) C_2h_5 Γ C = C OH Ch_3 - 15. What is meant by SN reaction? Explain the mechanism for the nucleophillic reaction that proceeds with and inversion of configuration. Why inversion product predominates more than retention product is SN₁ reaction. [1+3+1] - 16. What do you mean by elimination reaction? Write the mechanism for dehydrohalogenation in primary alkylhalide. Show your acquaintance to Saytzeff's rule. [1+2+2] *** # **Examination Control Division 2073 Magh** | Exam. | New Back (2 | 066 & Later B | atch) | |-------------|--------------------------------------|---------------|--------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEX, BCT,
BIE, B.Agri., BAME | Pass Marks | 32 | | Year / Part | I/II | Time | 3 hrs. | [2] ### Subject: - Engineering Chemistry (SH453) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt All questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. - 1. What is non-standard electrode potential? Calculate the emf of the cell obtained from given electrode reactions. Fe⁺⁺ (0.2M)+2e⁻ $$\rightarrow$$ Fe $E^0 = (-0.44 \text{ V})$ Ag \rightarrow Ag⁺ (0.1M)+2e⁻ $E^0 = (-0.80 \text{ V})$ [1+4] - Define Buffer. Derive Henderson's equation for acidic buffer. Calculate the pH of the solution formed by adding 0.4 g of NaOH on 500 mL 0.2 M acetic acid. pKa for acetic acid = 4.74. [1+2+2] - 3. What is autocatalysis? Distinguish between positive and negative catalysis with examples. How does poison paralyze the activity of a catalyst? [1+3+1] - 4. a) What are Freons? Describe their role in the depletion of ozone layer with the photochemical reactions. - b) How does carbon dioxide cause atmospheric pollution? [1+2+2] - 5. What is air pollution? What are the main pollutants of air and their sources? Give possible remedies of air pollution. [1+2+2] - 6. What are biodegradable polymers? Write down the preparation and uses of Nylon and Teflon. [1+4] - 7. What is inorganic polymer? Give an account of preparation and application of network polymer of Sulphur in engineering field. Also mention the two uses of silicones. [1+3+1] - 8. a) What are solid lubricants? Under what condition, they are used. - b) Mention the requisites of good paint. Explain the method of application of paint in galvanized iron. [2+3] - 9. a) Why do transition elements form complexes? - b) Why are most of the compounds of transition elements are coloured? [3] - 10. a) Why do the transition metals show paramagnetism? [2.5] - b) Why do transition metals exhibit variable oxidation states? [2.5] - 11. What are principle and auxiliary valencies of the metal in the complex compounds? Illustrate with suitable example. Write the IUPAC names of - a) Na[Ag(CN)₂] - b) [Go (NH₃)₄H₂O.Cl] Cl₂ - c) [Cr (en)₃] Cl₃ - d) $K_4 [Mn (Cl)_6]$ [3+2] - 12. Explain the formation of [Fe(CN)₆]³⁻ and [FeF₆]³⁻ on the basis of Valence Bond Theory and also predict their magnetic property. [2+2+1] | 13. What are high explosives and low explosives? Write the preparation and uses of TNT. | [2+3] | |--|------------| | 14. a) Define enantiomers and diastereomers. | [2] | | b) Write all the possible stereoisomers of tartaric acid. Does tartaric acid has meso form Explain with reason. | ?
[2+1] | | 15. Describe the mechanism for the conversion of Bromomethane into methanol in presence of aq. alkali. Why does SN ² reaction take place with stereochemical inversion? | | | 16. What is elimination reaction? Explain the reaction mechanism for the dehydrohalogenation of tertiary alkyl halide. | | k** 4 ### **Examination Control Division** 2073 Bhadra | Exam. | Reg | ular | | |-------------|--------------------------------------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEX, BCT,
BIE, B.Agri., BAME | Pass Marks | 32 | | Year / Part | I/II | Time | 3 hrs. | ### Subject: - Engineering Chemistry (SH453) ✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt All questions. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. 1. Define electrode potential. How do you measure standard electrode potential of zinc electrode? Find the Emf of the following cell at 25°C. [1+2+2] $Cu/Cu^{++}(0.2M)//Ag^{+}(0.1M) / Ag$ Given: $E^{\circ}Ag^{+}/Ag = 0.80V$ and $E^{\circ}Cu/Cu^{++} = -0.34 V$ - 2. What are the criteria for buffer system? Calculate the weight in gram of NH₄Cl required to prepare buffer solution with 2 litre of 0.2N NH₄OH solution with pH = 9. $(K_b = 1.8 \times 10^{-5})$ - How does a catalyst increase the speed of a reaction? Explain heterogeneous catalysis. Explain with an example the adsorption theory of catalysis. - 4. What are water pollutants? Write the major sources of water pollution. How do the oxides of sulphur and nitrogen make water acidic? [1+2+2] - 5. Write notes on: [2.5+2.5] a) Acid rain - b) Ozone depletion - 6. What is paint? What are the requisites of good paint? Show your familiarity with the types of paints. [1+2+2] - 7. a) Write the preparation and uses of polyphosphonitrilic chloride. [2.5] - b) Write the types of silicones and their uses. [2.5] Write short notes on Bakelite and Teflon. [2.5+2.5] - 9. Write the important characteristics of explosives? Give the preparation and uses of TNT? Why does detonator required for the explosion of TNT? [2+2+1] - 10. What are transition elements? Write the electronic configurations of the 1st row transition series. The paramagnetism of substance is due to the presence of unpaired electrons. Explain. [1+2+2] - 11. Give the reasons for the features of the transition metals. - a) Most of the transition metal ions are colored in solution. - b) Transition metals are well known to form complex compounds. [2.5+2.5] - 12. a) Differentiate between complex compounds and double salts. [1] - b) Write the IUPAC name of the following complexes compounds and find the Effective Atomic Number of the central metal in these complexes. [4] - (i) [Co(NH₃)₆]Cl₃ - (ii) [Cr(H₂O)₄Cl₂]Cl - (iii)[Cu(NH₃)₄]SO₄ - $(iv)K_3[AlF_6]$ | 3. Using VBT, explain as to show the two complexes [Ni(CN) ₄] ² and [Ni(Co) ₄] have different structure but do not differ in their magnetic behavior. | [5] | |--|------| | 4. a) Write Cis, Trans and Z, E notation for the possible isomer of but-2-enedioic acid. | | | b) Distinguish between enantiomers and disterioisomers. Give an example to support your answer. | 2+3] | | 5. Write the mechanism of the reaction of tertiary alkyl halide with | | | a) Aqueous NaoH b) Alcoholic KOH [2.5+] | 2.5] | | 6. a) How does the reaction of bromomethane occur with aqueous caustic soda? | | | b) Explain the reaction mechanism of dehydrohalogenation of 1° alkyl halide. [2.5+ | 2.5] | | *** | | ### **Examination Control Division** #### 2071 Bhadra | Exam. | Re | egular / Back | | |-------------|-----------------------------------|---------------|--------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEX,
BCT, BIE,
B.Agri. | Pass Marks | 32 | | Year / Part | I / II | Time | 3 hrs. | ### Subject: - Engineering Chemistry (SH453) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt All questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. - Define buffer capacity and buffer range. Calculate the concentration of sodium benzoate that must be present in 0.1 M benzoic acid to make a buffer solution of pH 3.7 (K_a for benzoic acid is 1.8 × 10⁻⁴) - 2. What is electrode potential? How does it originate? What will be the reduction potential of Zn^{2+}/Zn electrode when zinc metal in contact with 0.1 M H₂SO₄ at 25°C. Given $E^0_{Zn/Zn2+} = +0.768V$. [1+1+3] - 3. Define heterogenous catalysis. Describe the absorption theory of catalysis with suitable example. Write any two criteria of choosing catalyst for industrial purpose. [1+3+1] - 4. Global warming is one of the burning issues of the world. Point out major causes of global warming, its impacts and also control measures. [1+2+2] - 5. What do you mean by water pollution? What are the major water pollutants, mention their adverse effects. [1+2+2] - 6. Explain preparation and uses of polyphosphazines and polymeric sulfur nitride. [2.5+2.5] - 7. What is biodegradable polymer? Mention preparation and uses of the following. [1+2+2] - a) Epoxy resin b) Polyurethane 8. Give reasons for [2.5+2.5] - a) Cu(I) is diamagnetic where as Cu(II) is paramagnetic. - b) TiO₂ is white but TiCl₃ is violet. - 9. Give reasons: [2.5×2] - a) The components formed by symbol 'V' element in +5 oxidation state are colourless but those formed in +3 oxidation state are colourful. - b) Transition elements are mostly paramagnetic. - 10. What do you mean by effective atomic number? Give IUPAC name and calculate the effective atomic number of the following complexes. [1+4] - a) $[Fe(CN)_6]^{3}$ - b) $[Ag(NH_3)_4]^{\dagger}$ - c) $[Ni(CN)_4]^{2-}$ - d) $[Cr(H_2O)_6]^{2+}$ - 11. What are the inner orbital and outer orbital complexes? Explain formation of [Fe(CN)₆]⁴ on the basis of valance bond theory and predict its magnetic behavior. [2] 12. Explain why SN¹ reaction gives both retension and invertion isomers but SN² gives only invertion isomer. Write the mechanism of given chemical reaction. [2+3] $(CH_3)_3C - Br + NaOH \rightarrow (CH_3)_3COH + NaBr$ (aa) 13. Distinguish between enantiomers and diasteriomers. Show these isomers in 3-bromo-2-[2+3]14. What is an explosive? Classify explosives with examples.
What is the requirement of [1+2+2] good explosives? 15. What are elimination reactions? Write the differences between E₁ and E₂ reaction [1+4]mechanism taking suitable example. 16. a) What is lubricant? Write about the application of different types of lubricants. [1+2]b) Write the characteristics of good paint. [2] . . ## Examination Control Division. 2069 Bhadra | Exam. | Regular (20 | 066 & Later I | Batch) | |-------------|------------------------------|---------------|--------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEX,
BCT,BIE, B.Agri | Pass Marks | 32 | | Year / Part | I/II | Time | 3 hrs. | ### Subject: - Engineering Chemistry (SH453) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt <u>All</u> questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. - 1. How does electrode potential originate? Define standard electrode potential. Write the cell notation and cell reaction of Zn-Cu cell. [2+1+2] - 2. What is meant by buffer solution? Calculate the concentration of sodium formate, HCOONa, that must be present in a 0.10M solution of formic acid to produce a pH of 3.80. [Ka for formic acid is 1.8×10⁻⁴]. [1+4] - 3. Explain the terms: (a) Homogeneous catalysis (b) Catalytic poisoning (c) Promoters. [2+1.5+1.5] - 4. What are major gases responsible for causing green house effect and how are they released into the atmosphere? Give an account of the globel efforts to control the release of these gases. [1+2+2] - 5. What are the main sources of water pollution? Write the effect of water pollution on mankind. Mention the measures to control water pollution. [1+2+2] - 6. Write short notes on: (a) Sulphur based polymers (b) Polyphosphazines. [3+2] - 7. a) What are monomers of: (i) Polyurethane (ii) Nylon 6,6 (iii) Bakelite (iv) Epoxy resin. [2] - b) What are the engineering application of : (i) Polyvinyl chloride (ii) Conducting polymer. - 8 Why do transition metals: (i) Form complex compound (ii) Exhibit variable oxidation states. [1+2+2] - 9. Why are 3d-series elements called transition elements? Give their characteristic on the basis of valency. [2+3] - 10. Differentiate between low spin and high spin complexes. Explain the geometry and magnetic behaviour of [Ni(CO)₄]° on the basis of valence bond theory. [2+3] - 11. a) Differentiate between complex salts and double salts. Calculte EAN of the central metal atom in Fe(CN)₆ [2.5×2] - b) Write the IUPAC name of the following co-ordination compounds. (i) K[PtCL₅(NH₃)] (ii) [CO(NH₃)₅SO₄]Br - 12. a) Mention the importance of primary and low explosives. Give the preparation and uses of TNT and TNG. [5] - 13. a) What are lubricating greases? Give their functions. [1+2+2] - b) Show your acquaintance with types of paints. 1 M 14. What is optical activity? Give the sterioisomers of tartaric acid. Would you expect the following compound to be optically active? Explain. [1+3+1] - 15. How do SN1 and SN2 reactions differ in haloalkane? Mention the factors which regulates the reaction. [3+2] - 16. What do you mean by Elimination reactions? Explain the reaction mechanism for the dehydrohalogenation of tertiary alkyl halide. [2+3] ^ ### **Examination Control Division** | Exam. | | Regular | | |-------------|-------------------------------|------------|--------| | Level | BE · | Full Marks | 80 | | Programme | BEL, BEX,
BCT, BME,
BIE | Pass Marks | 32 | | Year / Part | I/II | Time | 3 hrs. | 2068 Bhadra ### Subject: - Engineering Chemistry ✓ Candidates are required to give their answers in their own words as far as practicable. Attempt All questions. The figures in the margin indicate Full Marks. Assume suitable data if necessary. 1. How does a galvanic cell differ from an electrolytic cell? Calculate the emf of the following cell at 25°C giving electrode reactions and cell reaction. [1+4] $Cd(s)cd^{++}(0.01M)//Cu^{++}(0.5M)Cu(s)$ $E^{0}Cd^{++}/cd = -0.140V$, $E^{0}Cu^{++}/cu = 0.34V$ 2. What is a buffer solution? Discuss the mechanism of buffer action with suitable examples. [1+4]3. What is meant by catalysis? Point out its importance. Discuss intermediate compound [1+1+3] formation theory of catalysis with suitable examples. 4. Brief discuss sources of organic and inorganic substances responsible for water pollution. Point out their adverse effects possible remedies. [3+2]5. a) What is meant by global warming? Give its causes and consequences. [3] b) What is the photochemistry behind ozone layer depletion? [2] [2.5] 6. a) What are chalcogenide glasses? Give their uses. b) Give the preparation and applications of silicone rubbers. 7. a) Give the preparation and applications of bakelite and polyurethanes. b) What are the advantages of conducting polymers? [1+2]a) What are transition elements? List the industrial application 3d transition elements. [2] b) Why do transition elements show variable oxidation states? 9. Explain the following features of transition elements with reference to 3d transition [3+2]series: a) Formation of complex compounds b) Formation of colored compounds 10. Differentiate between complex salts and double salt. How does Werner's theory explain [1+4]the bonding in complex salts? 11. Write the formulae of following: i) Potassium hexacyanoferrate (III) ii) Trioxalatoaluminate (III) ion iii) Trist (ethylenediamine) chromium (III) chloride iv) Bis (benzene) chromium(0) | | 03 | Morrison valuate bond theory explain the formation of [Ni(NH3)6] ²⁰ ? Predict its magnetic behaviour. | [3] | |-----|----|---|-------| | 12. | | nat are low explosives? Write their uses. Give the preparation and applications glycerol nitrate. | [2+3] | | 13. | a) | What are lubricating oils? Indicate their importance in engineering. | [2] | | | b) | What are paints? Discuss any two types of paints indicating their applications in engineering works. | [3] | | 14. | a) | What are geometrical isomers? Give an example specifying Z and E configuration. | [2] | | | b) | Show your familiarity with enantiomerism diastereomerism. | [3] | | 15. | | scuss the unimolecular nucleophilic substitution reaction mechanism in alkylhalide owing the stereochemistry. What type of solvent favors this type of mechanism? | [4+1] | | 16. | W | nat is meant by elimination reaction? Discuss E^1 and E^2 reaction mechanisms. | [1+4] | | | | | | 56 55 y ### **Examination Control Division** 2067 Mangsir | Exam. | Regular / Back | | | |-------------|-----------------------------------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEX,
BCT, BIE,
B.Agri. | Pass Marks | 32 | | Year / Part | I/II | Time | 3 hrs. | ### Subject: - Engineering Chemistry - Candidates are required to give their answers in their own words as far as practicable. - Attempt All questions. - The figures in the margin indicate Full Marks. - Assume suitable data if necessary. - 1. What is meant by standard electrode potential? Give the electrode reactions and calculate the emf of the following cell at 25°C. [1+4] Fe⁺⁺ = Fe⁺⁺⁺ +e⁻, E° = $$-0.77V$$ Ni⁺⁺ + 2e⁻ = Ni, E° = $-0.25V$ [Ni⁺⁺] = 0.2M, [Fe⁺⁺] = 0.1M, [Fe⁺⁺⁺] = 1M. - 2. What is a buffer? 1.64 g of anhydrous sodium acetate is added to 200ml of 0.2M acetic acid. What is the pH of buffer? Calculate the degree of ionization of the acid in the solution.(Ka of acid = 1.8×10^{-5}) [1+4] - 3. Describe the adsorption theory of catalysis with an example. How does a poison paralyze the activity of a catalyst? Give any two industrial applications of catalysts. [3+1+1] - 4. Write short notes on: [3+2] - a) Global warming - b) Acid rain - 5. What is meant by soil pollution? Point out the major sources of soil pollution, their [1+2+1+1] adverse effect and their possible remedies. - 6. a) What are polyphosphonitrilic compounds? Give one method for the preparation of polyphosphonitrilic compound and mention the uses. [3] - b) What are silicones? Give any two uses of silicones. [2] - 7. a) What is a thermosetting polymer? Write down the uses of epoxy resin. [2] - b) What are conducting and biodegradable polymers? Point out the applications of conducting polymers in engineering. [3] - 8. What are transition elements? Explain the variable oxidation states exhibited by 3d series. [1+3+1] Why does the transition elements form alloy? - 9. Explain the followings: [3+2] - a) Transition elements are good in forming complexes. - b) TiO₂ is white but TiCl₃ is violet - 10. What is complex salt? Give the main postulates of Werner's coordination theory. [1+4] | II.a | predict its magnetic behavior. | [3] | |-------|--|-------| | Ъ | Write the IUPAC name of the followings; | · [2] | | | i) K₃[Fe (CN)₆] ii) Na₃[Al C₂O₄)₃] iii) [Co Cl.CN.NO₂.(NH₃)₃] iv) [Cr (NO₃)₆]³⁻ | | | | What are characteristics of an explosive? Give the preparation of glycerol trinitrate GTN) and trinitrotoluene (TNT). Point out the industrial applications of explosives. [1+1.5+] | .5+1] | | 13. a | What is paint? Give the requisites of a good paint. | [1+2] | | b | What are lubricating greases? Give their functions. | [1+1] | | 14. a | Define enantiomers, racemic mixture and meso compound giving one example of each. Also comment on their optical activity. | [4] | | b | Draw the structure and specify Z and E configuration of 1- Bromo-1 chloropropene. | [1 | | į | Explain the S_N 2 reaction mechanism with reference to hydrolysis of alkylhalide. What ype of solvent favors this type of path? How can you say that carbocation is not
formed luring S_N 2 reaction? [3] | +1+1 | | | Write the mechanism of unimolecular elimination reaction. How does it differ from simolecular elimination reaction? | [3+2 | | | | | *** ### **Examination-Control Division** 2067 Chaitra a) Transition metals exhibit variable valency. b) [Ni(CO)₄]⁰ is diamagnetic and tetrahedral. b) Transition elements are very good in forming complexes. 11. How does the valence bond theory account for the following facts? a) [Fe(CN)₆]⁻⁴ ion is diamagnetic but [Fe(CN)₆]⁻³ is paramagnetic | Exam. | New Back (2066 Batch Only) | | | |-------------|-----------------------------------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEX,
BCT, BIE,
B.Agri. | Pass Marks | 32 | | Year / Part | I/II | Time | 3 hrs. | [5] ### Subject: - Engineering Chemistry Candidates are required to give their answers in their own words as far as practicable. Attempt All questions. The figures in the margin indicate Full Marks. Assume suitable data if necessary. 1. What is normal hydrogen electrode? A galvanic cell consists of a metallic nickel plate immersed in 0.1M Ni(NO₃)₂ solution and a metallic plate of copper in 0.2M CuSO₄ solution. Calculate the emf of this cell. [2+3] $E^{\circ}_{Ni}^{++}_{/Ni} = -0.25V$ $E_{Cu}^{++}/Cu = +0.34V$ 2. What is corrosion? Calculate the pH of a resulted solution when 0.1 gm of NaOH is added to 200ml of 0.1M acetic acid solution. (pK_a = 4.74). [1+4]3. What is catalyst? Explain positive and negative catalysis with two examples for each. [1+2+2] 4. Define heterogeneous catalysis. Give a brief account on theory of Heterogeneous catalysis. [1+4]5. Give an account of acid rain? What are the sources of CO and SO₂ pollutants in air? How are they controlled? [1+2+2]6. What is ozone depletion? Explain its causes. Mention the major pollutants of water? [1+2+2]7. Differentiate thermosetting and thermoplastics polymers. Write the name and the preparation of the organic polymers that are used for (i) Preparing ropes and socks (ii) Preparing non stick cooking utensils. [2+3]8. What is linear chain polymer? Write the preparation and uses of different types of sulphur bases inorganic polymers. [1+4]9. What are d-block elements? Give the electronic configuration of 3d series. Mention which d block metals are not considered as transition as transition metals and why? [1+2+2][2+3]10. Explain the following: - 12. Identify the complex ion and legends in the compound [Co(NH₃)₅]Ci₅. Write the formulae of the following co-ordination compounds. [2+3] - a) Dichloro tetra-aquo chromium (III) cation - b) Tris (ethylene diamine) chromium(III) chloride - c) Dicyano argentate (I) ion - d) Bromo penta-ammine cobalt (III) sulfate - e) Sod. hexa nitrito cobaltate(III) - f) Hexa-cyanoferrate (III) ion - 13. Define Dynamite and plastic explosive. Write the preparation, properties and uses of Nitro cellulose. [2+3] - 14. What are greases? Mention their specific uses. Write short note on varnish. [2+1+2] - 15. What is optical isomerism? Comment why presence of chiral centre is not sufficient for the molecule to be optically active. [1+4] - 16. Explain the reaction mechanism involved when primary alkyl halide react with alcoholic alkali and aqueous alkali.[5] ## **Examination Control Division** 2066 Magh | Exam. | Regi | ılar/Back | | |-------------|----------------------------|------------|--------| | Level | BE - | Full Marks | 80 | | Programme | BEL, BEX,
BCT, BME, BIE | Pass Marks | 32 | | Year / Part | I/II | Time | 3 hrs. | ### Subject: - Chemistry | | | | - Subject: - Chemistry | | |---------|-------------|------|--|-------| | | √
√
√ | Atte | didates are required to give their answers in their own words as far as practicable. | | | 34 | V | | figures in the margin indicate <u>Full Marks.</u>
ume suitable data if necessary. | f | | | | | Group A | | | • | i. | a) | Derive Schrodinger wave equation for the wave mechanical model of an atom and write the significance of ψ and ψ^2 . | [5] | | | | b) | State Heisenberg uncertainty principle. How this principle goes against Bohr's theory? Explain. | [1+3] | | | 2. | a) | What is de Broglie's equation? Derive a relation between wave length (λ) associated with particle of mass m moving with a velocity V. | [1+2] | | | | b) | Calculate the de Broglie wavelength for a ball of 200 gm mass moving with a velocity of 3×10^{10} cm/sec and an electron moving with the same velocity. What these values indicate? | [4] | | • | 3. | a) | What is buffer action? Explain clearly why a solution of weak acid and its salt with a strong base behaves as a buffer solution. | [1+3] | | 4 (1) A | | b) | 100 ml of 1M H2SO4 and 50 ml of 2M NaOH are mixed together. Calculate the pH of the resulting solution. | [4] | | | 4. | a) | What is electrochemical series? Write its applications. | [4] | | | | b) | Calculate the emf of the cell: Ni/Ni ⁺⁺ (1M) // Pb ⁺⁺ (1M) / Pb at 25°C | [4] | | | | | Write down its cell reaction. Standard electrode potential of Ni and Pb are -0.24V and -0.13V respectively at 25°C. | | | | | | Group B | | | | 5. | a) | Explain why transition metals (i) show variable oxidation states and (ii) form large number of complexes. | [6] | | | | b) | Write down the uses of silicones. | [2] | | | 6. | a) | Write down the conditions necessary for hybridization. Discuss the types of hybridization in SF ₆ molecule. | [2+4] | | | | b) | Explain the formation of N ₂ molecule on the basis of VBT. | [2] | | \$ · | 7. | a) ' | [Fe(CN) ₆] ³⁻ and [FeF ₆] ³⁻ , both are octahedral complexes. What is the difference between the two? Explain on the basis of VBT. | [3+3] | | | | b) | Write down the IUPAC names of the following co-ordination compounds (i) $K_3[Co(CN)_5C\ell]$ (ii) [Pt $C\ell$ (NO ₂)(NH ₃) ₂] (iii) [Pt $(OH)_4$] ²⁻ (iv) $K_2[HgI_4]$. | [2] | | | | | OR | | | | | a) | Write down the main postulates of Werner's co-ordination theory. | [5] - | | | | b) | The formation of inner orbital complexes of Ni ⁺² (CN=6) is not possible. Explain with example. | [3] | | | | | Group C | | | | 8. | a) | Explain the reaction mechanism of unimolecular elimination reaction with a suitable example. | [4] | | ٠. | | b) | What does SN ² and E ₂ represents? Write one example of each. | [2+2] | | | | -, | OR | · . | | | | a) | Explain the reaction mechanism of bimolecular nucleophilic substitution reaction with a suitable example. | [4] | | | | b) | Write E ₁ and pinacol pinacolone rearrangement reactions. | [2+2] | | | 9. | a) | Define geometrical and optical isomerisms with suitable examples and write the differences between enantiomers and diastereomers. | [3+3] | | | | b) | What happens when toluune is treated with chlorine in different conditions? | [2] | | | 10. | a) | Describe the preparation and uses of Teflon and Nylon 6,6. | [3] | | | ٠. | b) | What are explosives? Describe the preparation and uses of nitroglycerol. | [3] | | | | | | | c) How can you obtain carboxylic acid and ethanol from Grignard's reagent? ### **Examination Control Division** 2065 Kartik | Exam. | | Back | · · · · · · · · · · · · · · · · · · · | |-------------|-------------------------------|------------|---------------------------------------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEX,
BCT, BME,
BIE | Pass Marks | 32 | | Year / Part | L/ II | Time | 3 hrs. | ### Subject: - Chemistry - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt any <u>Five</u> questions selecting at least <u>Two</u> from <u>Group A</u>, <u>One</u> from <u>Group B</u> and <u>One</u> from <u>Group C</u>. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. ### Group A - 1. a) What is meant by 'buffer solution' and 'buffer action'? Explain clearly, why a solution of weak acid and its salt with a strong base behaves as a buffer solution. - b) Explain Sommerfeld's extension of Bohr's atomic model. Calculate the uncertainty in the position of an electron moving with velocity 600 m/s if error in the measurement of velocity is 0.005%. Comment on the result. - 2. a) What is electrochemical corrosion? Explain the mechanism of corrosion and methods of its prevention. - b) 1.64 gm of anhydrous sodium acetate is added to 400 ml of 0.2M acetic acid. What is the pH of buffer? Also calculate the degree of ionization of the acid in the solution. [8+8] - 3. a) What do you understand by the terms c_p and c_v? How are they related with each other? Derive the relationship. - b) What is normal hydrogen electrode? Calculate the emf of the following cell at 25°C. [8+2+6] Zn/Zn^{++} (0.1M) // Ag⁺ (1.2M)/Ag E° Zn/Zn^{++} = +0.76V $E^{\circ} Ag/Ag^{+} = -0.80V$ - 4. a) What is Aufbau principle? State and explain (n + 1) rule. Write down the configurations of Cu and Cr. Why don't these elements follow Aufbau principle? - b) Define the terms internal energy change and enthalpy change. How are they related? Calculate the work done when one mole of a gas at 25°C and 5 atm. pressure is allowed to expand isothermally but irreversibly against a constant external pressure of 1 atm. until the internal pressure is reduced to 1 atm. [8+4+4] ### Group B - 5. a) What are the conditions for hybridization? Discuss the type of hybridization that exists in the octahedral shape of molecule with an example. - b) Describe the formation of outer and inner orbital complexes on the basis of valence bond theory. [4+4+8] - 6. a) Why one d-block elements known as transition elements? Explain, why transition metals (i) form coloured compounds (ii) show variable oxidation state. - b) What are cyclic silicones? How are they formed? 7. Explain following giving appropriate reasons. $\lceil 4
\times 4 \rceil$ - a) Aqueous solution of $[CO(NH_3)_5C1]Cl_2$ gives white ppt with AgNO₃ solution but $[CO(NH_3)_3Cl_3]$ does not. - b) CH₄ and H₂O molecules have tetrahedral geometry but their bond angles are different. - c) PCl₅ exists in nature but NCl₅ does not. - d) σ bond is stronger than π bond. ### Group C 8. Explain the mechanism involved in the following reactions (a) hydrolysis of methyl bromide by aqueous sodium hydroxide. (b) Dehydrohalogination of tertiary butyl bromide by alcoholic sodium hydroxide. Give reasons. Why (i) Tertiary butyl bromide undergoes SN¹ reaction but methyl bromide undergoes SN² reaction. (ii) SN¹ reaction gives both retention and inversion products but SN² reaction gives inversion product only. [4+4+4+4 - 9. a) Describe the following with examples. - (i) Enautiomers (ii) Diastereomers (iii) Racemic mixture (iv) Meso compound. Justify the statement "All the diastereoisomers are stereoisomers but all the stereoisomers are not diastereoisomers". - b) What happens when (i) Glycerol undergoes nitration (ii) Chlorine is passed boiling tolueue in presence of uv light. [8+4+ - 10. Write short notes on: FO 1 0 - a) Addition polymerization giving preparation of (i) Teflon (ii) Polyster. - b) Starting from Grignard's reagent, how would you obtain (i) 1° alcohol (ii) 2° alcohol (iii) 3° alcohol (iv) higher alkane. ِ8⊤8 ### **Examination Control Division** 2065 Chaitra | Exam. | R | egular/Back | | |-------------|-------------------------------|-------------|--------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEX,
BCT, BME,
BIE | Pass Marks | 32 | | Year / Part | 1/П | Time | 3 hrs. | ### Subject: - Chemistry - Candidates are required to give their answers in their own words as far as practicable. - Attempt All questions. - The figures in the margin indicate Full Marks. - Assume suitable data if necessary. #### Group A 1. a) Write down the limitation of Bohr's atomic theory. [4] b) What is energy rule? Calculate of wave length of matter wave of electron. [2+2] 2. a) What is pH scale? Write down the limitation of pH meter. [2+1] b) Calculate teh pH change of buffer solution 100 C.C of semimolar NH₄OH and 400 C.C of N/10 NH₄Cl in which 20 ml of 0.5 N HCl is added $(K_b = 1.8 \times 10^{-5})$ [5] Give the electro chemical mechanism of corrosion. Calculate the molarity of Fe⁺⁺ ion in the cell when iron electrode is combined with standard AgCl/Ag, Cl electrode having emf 0.57V of cell. $E_{AgC\ell}^{o}, C\ell^{-} = +0.22V$ $$E_{Fe/Fe^{++}}^{o} = +0.44V$$ 4. Derive Kirchhoff's equation. Calculate the heat of formation of CH₄ gas if enthalpy of cobustion of CH₄ gas is -890 KJ, the amount of heat evolved by burning of coke is 394 KJ and standard enthalpy of formation of water is -286 KJ. [4+4] Write short notes on: [4+4] - a) Enthalpy - b) Calorific value of food ### Group B What are co-ordination compounds? Write down the main postulates of Werner's theory. [1+4] b) How does the valence bond theory explain the formation of tetrahedral complexes? [3] What are the differences between inner orbital and outer orbital complexes? Explain on the basis of valence bond theory the structure of [FeF₆]³. [2+4] b) Write down the IUPAC names of the following compounds. [2] - i) $[C_0(NH_3)_4SO_4]NO_3$ - ii) $Na_3[C_0(NO_2)_6]$ - iii) Na3[Al(C2O4)3] - iv) $[Pb(OH)_4]^{2+}$ | 6. | a) | What are transition elements? What do these elements | -3 -3 | |----------|-----------------|---|-------| | ş · · | | i) form large number of complexesii) form coloured compounds | | | | b) . | Give the four important properties and uses of silicons. | [2] | | 7. | a) | What are the postulates of valence bond theory of covalent bond? | [3] | | . 193 | b) | What is hybridization? How does the shape of octahedral molecules better explained on the basis of hybridization. | [1+4] | | | | Group C | | | 8. | a) | Give an account of stereoisomerism shown by but $-2 - \text{ene} - 1$, $4 - \text{dioic}$ acid and $2 - \text{hydroxypropanic}$ acid. | [3] | | | b) | Differentiate between racemic mixture and meso compound. | [2] | | | c) [.] | Write the possible isomers of 2, 3 – dichloropentane and mention enantiomers and diastereomers. | [3] | | 9. | a) | Explain the SN reaction mechanism. Which occurs both by retention and inversion of configuration. | [4] | | e mente, | b) | Describe the mechanism involved in the reaction between tertiary butyl bromide and alcoholic KOH. | [4] | | | | OR | | | | a) | Why do SN ₁ mechanism occur in two steps? | [2] | | 7 | b) | Why does the attack of nucleophile on tertiary butyl carbonium ion mostly prefer from back side? | [2] | | | c) | Give an account of Pinacol $-$ pinacolone rearrangement and dehydro halogenation of 3 – alkyl halide. | [4] | | 10 |). a) | Write the preparation and uses of polymers formed by the polymerization of tetrafluoroe thylene and vinyl chloride. | [4] | | | b) | What happens when | [4] | | | | i) Grignard reagent reacts with ethanol ii) Methyl benzne is oxidised by acidic chronnyl chloride iii) Toluene is treated with furning nitric acid iv) n-heptane undergoes aromatisation | | ## **Examination Control Division** | Exam. | | Regular | | |--------------------|-----------------------------------|------------|--------| | | BE · | Full Marks | 80 | | Level
Programme | BEL, BEX,
BCT, BIE,
B.Agri. | Pass Marks | 32 | | Year / Part | I/II | Time | 3 hrs. | ### 2070 Bhadra | | The state of s | 40.00 | | |------------|--|-----------|---------| | Subject: - | Engineering | Chemistry | (SH453) | | Subject: - Engineering Chemistry (SH453) | and the second s | |---
--| | ✓ Candidates are required to give their answers in their own words as far as pract ✓ Attempt All questions. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. | ticable. | | What is meant by buffering capacity? A research student desires to prepare of solution buffered at pH 9.00. How many grams of ammonium chloride have to one litre of 0.20 M NH₃ to make such a buffer? [pK_b value of ammonia is 4 a) What is normal hydrogen electrode? b) Calculate the EMF of the following cell at 25°C. E° Fe⁺⁺⁺/Fe⁺⁺ = -0.77V, E° SN⁺⁺/SN = -0.14 V in which [Fe⁺⁺⁺] = 0.4 In [SN⁺⁺] = 0.2 M | [1+4]
[1]
[4]
M, | | 3. What do you mean by catalytic poisoning? Explain the adsorption theory of congregation are example. | | | Point out the major sources of soil pollution, their adverse effect and t remedies. | | | Give your familiarity with water pollution. Write the CFC involve for
depletion and harmful effects. | [3+2] [2+3] | | 6. Write short notes on (a) Chalcogenide glasses (b) Silicones.7. What are biodegradable polymers? Give the preparation and uses of epopolystyrene. | exy resins and [1+4] | | 8. a) Explain the formation of [Ni(NH ₃) ₆] ²⁺ on the basis of valance bond predict its geometry and magnetic behavior. | approach and [3] | | b) Write the IUPAC name of the following co-ordination compounds. i) Na [Au(CN)₂] ii) K₃ [Fe(C₂O₄)₃] iii) [PtCl₂ (NH₃)₄] Br₂ iv) [Co (NH₃)₆] Cl₃ | | | 9. How does a double salt differ from a complex salt? How does Werner's the structure of complex compounds? | | | 10. a) Write the general outer electronic configuration of transition elements.b) Give reasons why transition elements are coloured and paramagnetic. | [1]
[4] | | 11. a) Give reasons why Zn and Cd are not considered as typical transition meb) Explain the main characteristics of 3d transition elements. | etals. [2] | | | | | 12. List the important characteristics of explosives. Give the preparation and uses of trinitrotoluene (TNT). | [2+3] | |--|-------| | 13. a) Write the important functions of lubricant. What are solid lubricant and specify in which conditions it is used. | [2.5] | | b) Mention the requisites of good paints and write about varnish. | [2.5] | | 14. a) Define the geometrical isomerism and write an example with Z and E notation. | [2] | | b) Write the possible isomers of 3-bromo-2-butanol and specify enantiomers, raxemization and resolution of recemic mixture. | [3] | | 15. Explain the reaction mechanism for the dehydrohalogenation of tertiary butyl bromide. Differentiate between E^1 and E^2 mechanism. | [3+2] | | 16. Give an account of SN reactions. Explain the reaction mechanism for the reaction between 3° alkyl halide and aquecus NaOH. | [2+3] | ### **Examination Control Division** ### 2072 Ashwin | Exam. | Re | egular | | |-------------|---------------------------------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BEL, BEX, BCT,
BIE, B. Agri. | Pass Marks | 32 | | Year / Part | Ι/Π · | Time | 3 hrs. | ## Subject: - Engineering Chemistry (SH453) | | \ \ \ \ \ \ | The figures in the margin indicate <u>Full Marks</u> . | | |----------------------------|--------------------|--|-----| | 1 | - | What is meant by standard hydrogen electrode? Explain briefly with diagram. Calculate the emf of the following cell at 25°C Mg/Mg ⁺⁺ (0.1M)//Ag ⁺ (1M)/Ag. Given E°Mg ⁺⁺ /Mg = -2.37 V E°Ag ⁺ /Ag = +0.80V [3+4] | -2] | | 3 | | a) What is meant by buffer capacity of a buffer solution? How does a solution containing a mixture of benzoic acid and sodium benzoate maintain its constant pH value even on the addition of small amount of strong acid or alkali? Explain. | [3] | | | | b) Derive Henderson's equation for basic buffer solution. | [2] | | \$ | 3. | Show your acquaintance to homogenous and heterogeneous catalysis. Describe the intermediate compound formation theory of catalysis. [24] | -3] | | <i>, , , , , , , , , ,</i> | 4. | a) What are the main sources of water pollution? Write the various impacts of water pollution. | [3] | | | | b) What are the causes of soil pollution? How it can be controlled? | [2] | | | 5. | What are air pollutants? Give a brief account about the adverse effects of air pollutants on human beings and their possible remedies. [2+1.5+1] | .5] | | 3 | 6. | What do you meant by cross linked polymer? What are the general characteristics of inorganic polymer? What are the engineering application of chalcagenide polymer? [1+2+2] | -2] | | | .7. | | [3] | | | | b) What are non-biodegradable polymers? What are the demerits of using them? | [2] | | 3 | 8. | | [2] | | | | b) Why do transition elements show variable oxidation state? Point out the industrial applications of 3d-series elements. | [3] | | - | | Explain why: [2.5> | (2] | | | 3 | a) Compounds of Titanium in +3 oxidation state are coloured but those in +4 oxidation state are colourless.b) Transition elements formed significant number of complexes. | | | | 10 |). How would you account for the difference in structures and magnetic properties between [Ni(Cl ₄] ²⁻ and [Ni(CN) ₄] ²⁻ ? [2.5> | :2] | | 11. a) | Name the following complexes by IUPAC system | [2+3] | | | | | |-----------------|---|-------|--|--|--|--| | 2 | i) [Cr(H ₂ O) ₅ Cl]Cl ₂
ii) [Co(en) ₃]Br ₃
iii) K ₂ [NiCl ₄]
iv) [Cr(C ₆ H ₆) ₂] | | | | | | | b) | How does Werner's theory explain the structures of complex compounds? | | | | | | | 12. W
2 trii | That are primary and low explosives? Give the preparation and uses of glycerol nitrate. | [2+3] | | | | | | 13. a) | What is paint? Give the requisites of a good paint. | [3+2] | | | | | | 2 b) | What are lubricating oils? Indicate their importance in engineering fiels. | | | | | | | 14. a) | What isomerism is shown by butenedioic acid and why? | [3+2] | | | | | | % b) | Differentiate between racemic mixture and meso compound. | | | | | | | 15. WI
3 Sh | hat are elimination reactions? Write the mechanism of E^2 reaction taking an example. ow your acquaintance to Saytzeff's rule. | +2+2] | | | | | | | nat do you mean by SN reactions? Explain reaction mechanism for the hydrolysis of 3° by halide by aqueous sodium hydroxide. | [1+4] | | | | | | *** | | | | | | | \$